Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ming-Lin Guo

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail:
guomlin@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$

R factor $=0.056$

$w R$ factor $=0.146$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,10-Phenanthrolin-1-ium 2-carboxy-4-nitrobenzoate

The cation of the title salt, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}^{-}$, is a monoprotonated 1,10-phenanthroline molecule, whereas its anion is a monodeprotonated 4-nitrophthalic acid molecule. There is a strong, almost symmetrical, intramolecular hydrogen bond linking the O atoms of neighbouring carboxylate groups within the anion $[\mathrm{O}-\mathrm{H}=1.13(4) \AA, \mathrm{H} \cdots \mathrm{O}=$ 1.27 (4) $\AA, \mathrm{O} \cdots \mathrm{O}=2.395(3) \AA$ and $\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=173(4)^{\circ}\right]$. An $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond $[\mathrm{N}-\mathrm{H}=1.00$ (3) $\AA, \mathrm{H} \cdots \mathrm{O}=1.70$ (3) \AA, $\mathrm{N} \cdots \mathrm{O}=2.668(3) \AA$ and $\left.\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=160(3)^{\circ}\right]$ is responsible for formation of ion pairs, which are further loosely aggregated into a three-dimensional framework via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions.

Comment

The title salt, (I), is composed of a cation which is a monoprotonated 1,10-phenanthroline molecule, and an anion, which is a monodeprotonated 4-nitrophthalic acid molecule. The structures of the cation and anion are shown in Fig. 1.

(I)

The protonation of atom N 1 of the cation leads to a significant increase of the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$ angle [122.0 (2) ${ }^{\circ}$], as compared with the $\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10$ angle [116.4 (2) ${ }^{\circ}$] at the non-protonated atom N 2 . The increase in the bond angle at the protonated N atom is not unexpected, as an analogous difference in the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles was observed in previously reported monoprotonated phenanthrolines (e.g. Hensen et al., 1998, 2000).

The anion features an almost symmetrical intramolecular $\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$ hydrogen bond (Table 2), linking the O atoms of the neighbouring carboxylate groups. Even though the difference between the $\mathrm{O} 2-\mathrm{H} 2 A$ and $\mathrm{H} 2 A \cdots \mathrm{O} 3$ distances barely exceeds 3σ, it is correlated with there being a more pronounced difference between the $\mathrm{O}-\mathrm{C}$ bond lengths in one of the carboxyl groups $[\mathrm{O} 1-\mathrm{C} 19=1.208$ (3) \AA and $\mathrm{O} 2-\mathrm{C} 19=$ 1.292 (3) \AA A $]$ than there is in the other group $[\mathrm{O} 4-\mathrm{C} 20=$ 1.226 (3) \AA and $\mathrm{O} 3-\mathrm{C} 20=1.260$ (3) \AA. .

Received 22 November 2004
Accepted 18 January 2005 Online 29 January 2005

Figure 1
A view of the cation and anion in the structure of (I), showing the atomnumbering scheme; displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A packing diagram of (I), viewed along the a axis, showing hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines).

Atom $\mathrm{H} 1 A$ is involved in an $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{iv}}$ bond [Table 2; symmetry code: (iv) $1+x,-1+y, z$], which joins the cations and anions into ion pairs. These are further loosely aggregated into a three-dimensional framework via relatively weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2), as well as $\pi-\pi$ interactions between the $\mathrm{N} 2 / \mathrm{C} 10 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 11$ and $\mathrm{C} 13^{\mathrm{v}}-\mathrm{C} 18^{\mathrm{v}}$ rings [symmetry code: (v) $x, y-1, z$]. The interplanar spacing is ca $3.43 \AA$, the ring-centroid separation is 3.730 (2) \AA and the dihedral angle is $1.95(4)^{\circ}$. A packing diagram for the structure of (I) is shown in Fig. 2.

Experimental

The title salt was prepared by mixing ethanol solutions of 4-nitrophthalic acid (0.4 g in 10 ml) and 1, 10 -phenanthroline (0.4 g in 10 ml). The solution was stirred at room temperature for 10 min , after which the crystalline product was separated by filtration $(0.7 \mathrm{~g}$, yield 87.5%). The pure product (0.5 g) was heated and dissolved in water $(25 \mathrm{ml})$. Single crystals were obtained from this aqueous solution by slow concentration over a period of five days at room temperature.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{6}^{-}$
$M_{r}=391.33$
Monoclinic, $P 2_{1} / c$
$a=6.328(2) \AA$
$b=7.696(3) \AA$
$c=35.175$ (12) \AA
$\beta=92.678(6)^{\circ}$
$V=1711.0$ (11) \AA^{3}
$Z=4$
$D_{x}=1.519 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 784
reflections
$\theta=2.9-25.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.26 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.959, T_{\text {max }}=0.989$
9498 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.146$
$S=1.05$
3486 reflections
271 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0557 P)^{2}\right. \\
& +0.6995 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0069 \text { (12) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C19	$1.208(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.356(3)$
$\mathrm{O} 2-\mathrm{C} 19$	$1.292(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.322(3)$
O2-H2A	$1.13(4)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.355(3)$
O3-C20	$1.260(3)$	$\mathrm{N} 3-\mathrm{C} 17$	$1.466(3)$
O3-H2A	$1.27(4)$	$\mathrm{C} 13-\mathrm{C} 19$	$1.526(3)$
O4-C20	$1.226(3)$	$\mathrm{C} 14-\mathrm{C} 20$	$1.526(4)$
N1-C1	$1.327(3)$		
C1-N1-C12	$122.0(2)$	$\mathrm{O} 1-\mathrm{C} 19-\mathrm{C} 13$	$119.4(2)$
C10-N2-C11	$116.4(2)$	$\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 13$	$119.2(2)$
O5-N3-O6	$122.8(3)$	$\mathrm{O} 4-\mathrm{C} 20-\mathrm{O} 3$	$123.0(3)$
O5-N3-C17	$118.0(3)$	$\mathrm{O} 4-\mathrm{C} 20-\mathrm{C} 14$	$116.5(2)$
O6-N3-C17	$119.2(3)$	$\mathrm{O} 3-\mathrm{C} 20-\mathrm{C} 14$	$120.4(2)$
$\mathrm{O} 1-\mathrm{C} 19-\mathrm{O} 2$	$121.4(3)$		
C11-N2-C10-C9	$-0.8(5)$	$\mathrm{O} 5-\mathrm{N} 3-\mathrm{C} 17-\mathrm{C} 16$	$2.7(5)$
C10-N2-C11-C7	$-0.6(4)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 19-\mathrm{O} 1$	$166.7(3)$
C8-C7-C11-N2	$1.7(4)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 19-\mathrm{O} 2$	$169.0(2)$
C1-N1-C12-C4	$-2.0(4)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 20-\mathrm{O} 4$	$-176.6(3)$
O6-N3-C17-C18	$1.5(4)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 20-\mathrm{O} 3$	$-172.8(3)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.58	$3.507(4)$	177
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.50	$3.206(3)$	133
$\mathrm{C} 3-\mathrm{H} 3 \cdots 3^{\text {iii }}$	0.93	2.51	$3.216(4)$	132
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	$1.13(4)$	$1.27(4)$	$2.395(3)$	$173(4)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {iv }}$	$1.00(3)$	$1.70(3)$	$2.668(3)$	$160(3)$
Symmetry codes: (i) $-x+2,-y+1,-z+1 ;$ (ii) $x-1, y, z ;$ (iii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2} ;$				

organic papers

H atoms bonded to the O and N atoms were located in a difference Fourier map and refined in the isotropic approximation. H atoms bonded to C atoms were included in the refinement in the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART (Version 5.051) and SAINT (Version 5. 06a). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Hensen, K., Gebhardt, F. \& Bolte, M. (1998). Acta Cryst. C54, 359-361
Hensen, K., Spangenberg, B. \& Bolte M. (2000). Acta Cryst. C56, 208-210. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

