ISSN 1600-5368

#### Ming-Lin Guo

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail: guomlin@public.tpt.tj.cn

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.004 Å R factor = 0.056 wR factor = 0.146 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 1,10-Phenanthrolin-1-ium 2-carboxy-4-nitrobenzoate

The cation of the title salt,  $C_{12}H_9N_2^+ \cdot C_8H_4NO_6^-$ , is a monoprotonated 1,10-phenanthroline molecule, whereas its anion is a monodeprotonated 4-nitrophthalic acid molecule. There is a strong, almost symmetrical, intramolecular hydrogen bond linking the O atoms of neighbouring carboxylate groups within the anion  $[O-H = 1.13 (4) \text{ Å}, H \cdots O = 1.27 (4) \text{ Å}, O \cdots O = 2.395 (3) \text{ Å} and O-H \cdots O = 173 (4)^\circ]$ . An N-H···O bond  $[N-H = 1.00 (3) \text{ Å}, H \cdots O = 1.70 (3) \text{ Å}, N \cdots O = 2.668 (3) \text{ Å} and N-H \cdots O = 160 (3)^\circ]$  is responsible for formation of ion pairs, which are further loosely aggregated into a three-dimensional framework *via* C-H···O and  $\pi$ - $\pi$  interactions.

# Comment

The title salt, (I), is composed of a cation which is a monoprotonated 1,10-phenanthroline molecule, and an anion, which is a monodeprotonated 4-nitrophthalic acid molecule. The structures of the cation and anion are shown in Fig. 1.

The protonation of atom N1 of the cation leads to a significant increase of the C1-N1-C12 angle [122.0 (2)°], as compared with the C11-N2-C10 angle [116.4 (2)°] at the non-protonated atom N2. The increase in the bond angle at the protonated N atom is not unexpected, as an analogous difference in the C-N-C bond angles was observed in previously reported monoprotonated phenanthrolines (*e.g.* Hensen *et al.*, 1998, 2000).

The anion features an almost symmetrical intramolecular O2-H2A···O3 hydrogen bond (Table 2), linking the O atoms of the neighbouring carboxylate groups. Even though the difference between the O2-H2A and H2A···O3 distances barely exceeds  $3\sigma$ , it is correlated with there being a more pronounced difference between the O-C bond lengths in one of the carboxyl groups [O1-C19 = 1.208 (3) Å and O2-C19 = 1.292 (3) Å] than there is in the other group [O4-C20 = 1.226 (3) Å and O3-C20 = 1.260 (3) Å].

Received 22 November 2004 Accepted 18 January 2005 Online 29 January 2005

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved



## Figure 1

A view of the cation and anion in the structure of (I), showing the atomnumbering scheme; displacement ellipsoids are drawn at the 30%probability level.



#### Figure 2

A packing diagram of (I), viewed along the *a* axis, showing hydrogen bonds and  $C-H \cdots O$  interactions (dashed lines).

Atom H1A is involved in an N1-H1A···O4<sup>iv</sup> bond [Table 2; symmetry code: (iv) 1 + x, -1 + y, z], which joins the cations and anions into ion pairs. These are further loosely aggregated into a three-dimensional framework via relatively weak C-H···O interactions (Table 2), as well as  $\pi$ - $\pi$  interactions between the N2/C10/C9/C8/C7/C11 and C13<sup>v</sup>-C18<sup>v</sup> rings [symmetry code: (v) x, y - 1, z]. The interplanar spacing is ca 3.43 Å, the ring-centroid separation is 3.730 (2) Å and the dihedral angle is 1.95 (4)°. A packing diagram for the structure of (I) is shown in Fig. 2.

# **Experimental**

The title salt was prepared by mixing ethanol solutions of 4-nitrophthalic acid (0.4 g in 10 ml) and 1,10-phenanthroline (0.4 g in 10 ml). The solution was stirred at room temperature for 10 min, after which the crystalline product was separated by filtration (0.7 g, yield 87.5%). The pure product (0.5 g) was heated and dissolved in water (25 ml). Single crystals were obtained from this aqueous solution by slow concentration over a period of five days at room temperature.

#### Crystal data

| $C_{12}H_9N_2^+ \cdot C_8H_4NO_6^-$ |
|-------------------------------------|
| $M_r = 391.33$                      |
| Monoclinic, $P2_1/c$                |
| a = 6.328 (2)  Å                    |
| b = 7.696 (3) Å                     |
| c = 35.175 (12) Å                   |
| $\beta = 92.678 \ (6)^{\circ}$      |
| $V = 1711.0 (11) \text{ Å}^3$       |
| Z = 4                               |
|                                     |

#### Data collection

Bruker SMART CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.959, \ T_{\max} = 0.989$ 9498 measured reflections

# Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0557P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.056$ | + 0.6995P]                                                 |
| $wR(F^2) = 0.146$               | where $P = (F_0^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.002$                        |
| 3486 reflections                | $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 271 parameters                  | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of | Extinction correction: SHELXL97                            |
| independent and constrained     | Extinction coefficient: 0.0069 (12)                        |
| refinement                      |                                                            |

 $D_x = 1.519 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation Cell parameters from 784 reflections  $\theta=2.9{-}25.4^\circ$  $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) K Block, yellow  $0.26 \times 0.12 \times 0.10 \text{ mm}$ 

3486 independent reflections

 $R_{\rm int} = 0.038$  $\theta_{\rm max} = 26.4^{\circ}$ 

 $h = -6 \rightarrow 7$  $k = -9 \rightarrow 8$ 

 $l = -42 \rightarrow 43$ 

2198 reflections with  $I > 2\sigma(I)$ 

# Table 1

Selected geometric parameters (Å, °).

| O1-C19        | 1.208 (3) | N1-C12         | 1.356 (3)  |
|---------------|-----------|----------------|------------|
| O2-C19        | 1.292 (3) | N2-C10         | 1.322 (3)  |
| O2-H2A        | 1.13 (4)  | N2-C11         | 1.355 (3)  |
| O3-C20        | 1.260 (3) | N3-C17         | 1.466 (3)  |
| O3-H2A        | 1.27 (4)  | C13-C19        | 1.526 (3)  |
| O4-C20        | 1.226 (3) | C14-C20        | 1.526 (4)  |
| N1-C1         | 1.327 (3) |                |            |
| C1-N1-C12     | 122.0 (2) | O1-C19-C13     | 119.4 (2)  |
| C10-N2-C11    | 116.4 (2) | O2-C19-C13     | 119.2 (2)  |
| O5-N3-O6      | 122.8 (3) | O4-C20-O3      | 123.0 (3)  |
| O5-N3-C17     | 118.0 (3) | O4-C20-C14     | 116.5 (2)  |
| O6-N3-C17     | 119.2 (3) | O3-C20-C14     | 120.4 (2)  |
| O1-C19-O2     | 121.4 (3) |                |            |
| C11-N2-C10-C9 | -0.8(5)   | O5-N3-C17-C16  | 2.7 (5)    |
| C10-N2-C11-C7 | -0.6(4)   | C14-C13-C19-O1 | 166.7 (3)  |
| C8-C7-C11-N2  | 1.7 (4)   | C18-C13-C19-O2 | 169.0 (2)  |
| C1-N1-C12-C4  | -2.0(4)   | C13-C14-C20-O4 | -176.6(3)  |
| O6-N3-C17-C18 | 1.5 (4)   | C15-C14-C20-O3 | -172.8 (3) |

| Table 2                |         |
|------------------------|---------|
| Hydrogen-bond geometry | (Å, °). |
|                        |         |

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|-------------------------|--------------------------------------|
| C10−H10···O5 <sup>i</sup>   | 0.93     | 2.58                    | 3.507 (4)               | 177                                  |
| C5−H5···O1 <sup>ii</sup>    | 0.93     | 2.50                    | 3.206 (3)               | 133                                  |
| C3−H3···O3 <sup>iii</sup>   | 0.93     | 2.51                    | 3.216 (4)               | 132                                  |
| $O2-H2A\cdots O3$           | 1.13 (4) | 1.27 (4)                | 2.395 (3)               | 173 (4)                              |
| $N1-H1A\cdots O4^{iv}$      | 1.00 (3) | 1.70 (3)                | 2.668 (3)               | 160 (3)                              |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (iv) x + 1, y - 1, z.

H atoms bonded to the O and N atoms were located in a difference Fourier map and refined in the isotropic approximation. H atoms bonded to C atoms were included in the refinement in the ridingmodel approximation, with C-H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

#### References

- Bruker (1997). SMART (Version 5.051) and SAINT (Version 5.06a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359-361.
- Hensen, K., Spangenberg, B. & Bolte M. (2000). Acta Cryst. C56, 208–210. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.